The Role of Integration in NDT Quality Assurance Chain

by Peter Brunnengraeber and Ajay Pasupuleti

As the migration of digital imaging continues to expand from the primes down the chain of manufacture, the opportunity to integrate quality assurance chain improvements along the entire process is approaching. Given that nondestructive testing (NDT) managers and quality assurance staff have an already demanding job profile, documentation and verification software “apps” have the ability to make their jobs easier and decrease error. But as these apps grow, it is just as important to have interoperability between platforms. From mobile devices that we carry with us daily, to the reporting tools integrated into inspection software, making use of this data is of key importance and interoperability standards are the path forward. This paper discusses use cases of apps and their role in the supply chain, and presents the reasons interoperability is critical.

Introduction

In NDT, reporting of the interpretation is the most critical component of the imaging deliverable. The inspection report is only a portion of a total quality control process, but it has a critical impact. Take the example of a casting company: the imaging result can ultimately define whether a part is acceptable or is rejected. This is a point where digital record archiving can join with the digital imaging archival to bring the full reporting and record-keeping process into the digital realm. The aim is to simplify reporting for inspectors, document and validate the quality assurance process documentation required, and guarantee recall if and when necessary.

Once an inspection is reported, it is rarely reviewed again. The need to review generally occurs as a result of one of three cases: a problem with the inspected part, an audit, or for review in training. With the exception of training, the need to ensure a subsequent review can recall the same display as used in the original inspection is of paramount importance. The DICONDE Presentation State has been a topic in the ASTM International technical working group in an effort to resolve this exact issue with regard to display of the images within the review application (ASTM, 2011). This solves the application’s display recall, but that is only part of the problem. What then is the record to define what software was used, or more precisely, what version of software was used? Here is where the reporting tool can automate documentation, launch and determine what software and version is...
being run, record the name of the computer and operator, and link into the report values about the study being reviewed. Automation here ensures that these data are consistently recorded to the necessary level of detail without need for additional work by the operator, thus ensuring a quality audit trail for the quality assurance managers to provide potential auditors or clients.

Many shops still use a very paper-oriented process, relying on binders of note forms and signoff sheets. These can pass from the front office, to machine operators on the production floor, to the quality control department, before finally being completed for part shipment. Loss or misplacement of any of these documents can be a disaster if a customer rejects a part and the supporting quality documentation is not readily retrievable, possibly damaging a customer relationship (Statham, 2013). In a fully digital quality assurance process, each step can be completed in a fully digital document, which is stored centrally with a full audit trail.

At this point, automation can begin assisting to help further improve efficiency and accuracy. Since each stage is digitally signed, at the point of signature the credentials of the operator can be validated in a number of different ways (example workflow in Figure 1). An example would be that a welder might need an eye examination no more than every 90 days before working on a specific component. The system would be able to alert the welder to the fact of an upcoming examination requirement two weeks prior when working on one of these components. The quality control manager can also be forewarned of this requirement, adding a four-eyes principle to ensure the situation does not go unattended. Such a system would set up a scenario where, if the requirement were not handled appropriately and the required exam period did lapse, the signoff would be flagged or prevented.

It is important to note that each company will have its own unique process, component specific needs, quality assurance goals, and customer requirements. As such, any such system will need to be simple in the method for creating and deploying requirements without requiring a steep learning curve. A recommendation and technique for implantation of products is the use of portable document format (PDF) forms. These documents are easily created with off-the-shelf commercial software by adding form fields to documents created in desktop word processing applications. Such documents can also include drawings exported from computer-aided design and drafting software applications and have form fields attached for completion in quality control.

Another key reason for using the PDF form open document standard format is that it is device agnostic, meaning that, generally, all current computer and portable devices, tablets, smart phones, and so on carry support for PDFs (ISO, 2008). This allows for device native “app” development around a quality system without the need to build custom data collection tools. PDF files are also very widely known and familiar to most users.

In summary, a PDF is ideal because it is familiar to generally all users and is very visually friendly; forms are easily created.
and maintained with off-the-shelf software; form fields are available for freeform text, preset text, tabular values, and calculated results; device portability allows PDFs to be used in the front office, on the shop floors, or in the field with relative ease; and data fields are extractable for management reporting and production quality analytics. The hope is to spur adoption within the industry and grow the vision not only into radiographic imaging, but also to other NDT technologies such as ultrasonics, visual testing, and eddy current to complete the documentation cycle.

Looking to the future, the capture of all of these data electronically is an excellent vehicle to assist artificial intelligence algorithms to learn about discontinuity and begin providing automated flaw recognition to assist in inspections. The artificial intelligence system can provide customer and part specific automated learning and begin to mark-up the images and also identify possible markers in production and quality control, which can reduce the time to isolate causes for defects in a manufacturing process.

Conclusion

With all the positive benefits that digital inspection techniques have brought to the table, inspectors are being asked to do more. The workflow tools need to keep pace with the increasing volume of work, and are key to simplifying manual tasks while ensuring accuracy of the inspection record. Data management for inspection systems should not stop at simply storage of the image, but needs to extend into indexing, searching, and documentation of results. The driver is to increase the efficiency of inspectors to cope with the increased workloads and ensure a complete documents history is available on-demand without repetitive labor.

Through globalization, inspection facilities and the users of their services are also becoming less and less geographically centralized. As such, the spread of each part of the quality assurance process adds its own managerial overhead. The need to adhere to unified processes remains key to ensuring good quality assurance results, and the automation provided by a digital indexed archiving system prevents loss, allows quick search and retrieval, links reports to an image library, and makes a consistent quality assurance process viable.

AUTHORS

Peter Brunengraeber: B.S.; aycan Data Management, 693 E. Ave., Ste. 102, Rochester, New York 14607; (585) 271-3078; e-mail pbrunnen@aycandata.com.

Ajay Pasupuleti: Ph.D.; NanoArk Corp., 7500 Main St. Fishers, Victor, New York 14564; (585) 869-5574; e-mail apasupuleti@nanoark.com.

REFERENCES

N.D.T Professionals, start a world-class career at Arconic.

At Arconic, we say if it flies, we’re on it!

As an NDT II or III, your highly rewarding role helps make air travel safe and U.S. military jets the world’s best. Bring your curiosity and diverse perspectives to Arconic.

Work for the industry leader.
Create a great career.
Lead Arconic into a strong future.

Openings in four cities:
La Porte, Indiana, Whitehall, Michigan,
Dover, New Jersey and Wichita Falls, Texas.

Details at www.arconic.com/careers
Enter NDT in keyword search.
Introduction
X-ray inspection is a widely adapted technology for quality control of industrial products in many sectors. In particular, safety relevant parts in the aerospace, automotive, and oil and gas sectors are subject to exhaustive tests. A broad and sometimes confusing palette of international, national, and company specific quality standards and requirements has to be closely followed to pass the demanding audits. Additional uncertainty is evolving from the constant technology shift to digital radiography. The quality and variety of digital detector arrays (DDAs) is increasing at a faster pace than ever, allowing their usage in more and more applications.

At the same time as quality requirements increase, companies have to maintain a high cost-efficiency to remain competitive in a globalized world. In many cases the only solution to this dilemma is digitizing and streamlining the inspection process through modern digital radiography technology. Therefore, companies and nondestructive testing (NDT) managers all around the world are analyzing available solutions, which often poses a long-term capital investment. This article gives a brief understanding about the applications, capabilities, certification, and efficiency of complex X-ray systems and applications to inform NDT engineers and managers about the decision process in establishment of new equipment and processes.

To address all points, this article will be published in three issues of The NDT Technician. Each part has a distinct focus while building on each other:
• Part 1: Introduction, technology, and performance metrics.
• Part 2: Conception, system design, and investment justification.
• Part 3: Industry characteristics, summary, and practical examples.

Please note that the first part is highly focused on the underlying technical principles and commercial aspects.

The following issues will discuss practical implementations and best practices.

X-ray Technology and Components
It is important to understand that X-ray is by no means a generic inspection technology. X-ray components have to be fine-tuned and handpicked depending on the application. Hard factors are minimum inspection quality, throughput, and budget. Additional soft factors like operation mode, process compliance, company guidelines, operator preferences, and many more have a remarkable influence. This section introduces the available components and their key applications. Please note that this article does not go into detail regarding each technology and principle, as exhaustive literature is already available.

X-ray Sources
• Closed tubes (“mono blocks”)
• Mini-focus tubes
• Vario-focus tubes
• Micro-focus tubes
• Panoramic tubes

It is easy to notice that these tube categories are mainly distinguished by their focal spot size. Typical industrial X-ray tubes range from 160 to 600 kV, while most digital radiography applications use focal spots from 0.4 to 1.0 mm (0.02 to 0.04 in.), as defined in DIN EN 12543, Non-destructive Testing – Characteristics of Focal Spots in Industrial X-ray Systems for use in Non-destructive Testing (DIN, 2011). Panoramic tubes, which emit X-ray in 360°, and micro-focus tubes are not discussed here, as they would go beyond the extent of this article.

Image Sources
• DDAs, digital radiography
• Image intensifiers
Computed radiography
Linear detector arrays (LDAs)
Film (radiographic testing)

The amount of hardware options on the market is overwhelming. Picking the best choice requires vast experience with the respective devices and technologies. This article focuses on digital radiography as the emerging technology. Image intensifiers have basically been replaced by DDAs, while film and computed radiography are already very mature and often-discussed technologies. LDAs comprise single lines of X-ray sensitive diodes with a high readout speed. This allows generation of X-ray images through constant movement of the LDA or object. DDAs contain up to thousands of diode arrays to allow a direct representation of the X-ray radiation, as defined in ASTM E 2736, Standard Guide for Digital Detector Array Radiology (ASTM, 2010). Most DDAs used for NDT are adapted from the medical sector. This results in standard sizes and technical parameters—the 40.6 × 40.6 cm (16 × 16 in.) models, for example, are originated from thorax inspection. There is a variety of recognized manufacturers for such devices on the market and an even bigger choice of configurations. A typical C-arm setup that is used in digital radiography cabinets can be seen in Figure 1. The C-arm mounts an X-ray tube and DDA. This allows manipulation of the part in five dimensions and ensures a perpendicular setup at all times.

Inspection Concepts

Visual inspection (digital radiography)
Automated defect recognition (ADR)
Computed tomography

At the core of every digital system is the image processing and enhancement software. It allows image acquisition, processing, and archiving in respect to the inspection requirements. Hereby, one has to distinguish between three fundamental solutions: the visual inspection involves manual manipulation of the part, image acquisition, and discontinuity classification by a trained operator. A variation with a higher degree of automation is the usage of programmable computer numeric control sequences to ensure comprehensive coverage, going further towards automation results in ADR (VisiConsult, 2016a). This means that the complete inspection is carried out automatically through sophisticated self-learning algorithms. Modern ADR systems can easily detect inclusions or porosities in casting parts and are widely used in the automotive industry. Computed tomography allows 3D reconstruction of the object to perform advanced discontinuity or geometry analyses (VisiConsult, 2016b). All three approaches have their specific advantages and disadvantages. The use of the right inspection concept has to be determined during the project conception phase and is subject to a broad variety of influences. Figure 2 shows a typical digital radiography cabinet and software solution that can be used in a flexible way for many different inspection tasks.

Figure 1. A digital C-arm radiography cabinet consisting of an X-ray tube, flat panel detector, and part manipulator.

Figure 2. Digital radiography systems allow real-time representation, processing, and analysis of the X-ray images: (a) the working principle of the system; and (b) a close-up of the software.
Archiving Concepts

- Digital images
- DICONDE/picture archiving and communication system (PACS)
- Reports
- Video

For proof of quality, inspection results need to be archived. This can be done through conventional and compressed 8-bit images (like Bitmaps) or uncompressed 16-bit images (like TIFF). Inspection parameters are simply placed as overlays and replace the lead numbers used in film radiography. An alternative is to use the DICONDE container format, which holds all process information and inspection results and can be imported to a PACS. This way a DICONDE file works like a specimen dossier and can contain information of multiple NDT technologies and even production information. Modern processing software can export reports in PDF, Word, or Excel formats and are another option. Video recording allows capturing the complete inspection process. Typical applications are real-time inspection for spiral-welded pipes or surveillance of inspection in the defense sector. Every solution has its distinct characteristics, advantages, and disadvantages and should be determined by the requirements.

Introduction of Performance Parameters

The performance of every system or process can be measured in many different ways through key performance indicators (KPIs). Due to the complexity of modern inspection systems it is of the utmost importance to carefully analyze the capabilities and performance of the unique solutions and technologies. This section introduces different parameters from a technical and commercial perspective. All formulas are based on the widely accepted Overall Equipment Effectiveness (OEE) Foundation guidelines (OEE, 2000).

Quality and Failure Rate

Please note that quality herein is not referring to product quality but to inspection and process quality, as interpretation failure is defined as a significant deviation between the operator-determined and real defect class. As this metric alone is ambiguous, it is necessary to differentiate between false positives and false negatives. False positives, also called “false alarms,” are, from a technical point of view, not critical, as there is no danger that products with defects pass the quality control. From a commercial point of view, every false positive is potential scrap and lowers the overall output of the production.

False negatives, on the other hand, are absolutely critical and need to be eliminated, as quality control failed on them. During the project conception phase it is mandatory to set a certain threshold according to industry quality standards and end-customer requirements to avoid false negatives.

Assuming that false negatives are not accepted, the only impacting factor of this metric is false positives. The number of misclassifications can typically be reduced through process changes or more advanced equipment. Responsible persons need to ensure that the investments do not exceed the costs of productivity losses caused by false negatives. Figure 3 explains this correlation and highlights the target with the highest cost-benefit ratio. In the following, \(P \) stands for parts.

\[
\text{Quality} = \frac{P_{\text{total}} - P_{\text{false positive}}}{P_{\text{total}}}
\]

Figure 3. Visualization of a typical amortization curve of capital investment to reduce false negatives. Point X poses the optimum in terms of cost-benefit ratio.

Availability

Availability takes all events into account that stop the operation during planned operation time. Typical impacts are operator breaks and changes, X-ray warm-up, detector qualification, and maintenance. In general, it can be concluded that increased process safety and higher degrees of automation or parallelization increase the availability of the system. In the following, \(t \) stands for time, differentiated between scheduled and actual operating time.

\[
\text{Availability} = \frac{t_{\text{operating}}}{t_{\text{scheduled}}}
\]

Performance

The performance is purely focusing on the throughput. For correct usage of this metric, a realistic mean or ideal cycle time has to be defined. In case the X-ray inspection poses a critical bottleneck for the production output it is highly suggested to introduce some amount of buffer to the ideal cycle time to accommodate unforeseen events. The performance constantly changes based on the daily throughput. Typical impacts on this KPI are operator distractions, slow decisions, inefficient handling, and other unplanned incidents.

\[
\text{Performance} = \frac{P_{\text{inspected}} \times t_{\text{cycle time}}}{t_{\text{operating}}}
\]
Cycle Time

The cycle time describes the complete amount of time for processing a single part. This can include object identification, loading, inspection, archiving, marking, unloading, and many other activities depending on the inspection process. In some cases, the cycle time is predetermined through upstream production equipment or throughput requirements. If the inspection cycle time is not a bottleneck, this value just has to be defined by the technical department for internal labor allocations and performance controlling.

\[t_{cycle\ time} = \frac{t_{scheduled}}{P_{total} \times buffer\ %} \]

Overall Equipment Effectiveness

The most commonly used metric for manufacturing success and efficiency is OEE. It is designed to have a generic measurement of the production performance. The OEE cannot be used for financial evaluation, as it analyzes the process itself and is based on the performance targets. All KPIs until this point only measure efficiency and quality. This allows unbiased comparison of different solutions for the inspection task. Please note: the definition of the target is the most important step, as this is the reference every process is compared to. Figure 4 represents the composition of this metric.

\[OEE = quality \times availability \times performance \]

Return on Investment

The financial efficiency of an investment can be described in many ways. An easy to interpret representation is the normalization to months. The occurring savings might come from a broad variety of sectors: reduced material costs (for example, chemicals and film), reduced labor costs due to higher efficiency and automation, higher quality leading to less rejects or customer claims, and many more. To determine these costs, it is necessary to do a detailed analysis of the current process and an exact modulation of the future inspection process. Typically, suppliers of inspection solutions provide support and expertise during this process. It is important to note that after the return on investment (ROI) period, the system is “paid off” and only saves money.

\[ROI = \frac{investment\ costs}{savings\ per\ month} \]

Illustrative Example: Aluminum Casting Manufacturer

All numbers are purely fictive but represent the chosen industry: a casting company produces alloy parts for the automotive industry. The parts have several critical regions, which need to be inspected by X-ray, and the images have to be archived for 10 years. The system is directly embedded in an eight-hour per day operating production line with an output of 320 parts per day.

\[P_{total} = 320 \text{ parts} \quad t_{scheduled} = 8 \text{ h} = 480 \text{ min} \]
\[t_{cycle\ time} = 480 \text{ min} / 320 \text{ parts} = 1.5 \text{ min/part} \]

Example A: Manual Inspection by Film (Radiographic Testing)

\[P_{false\ positives} = 8 \text{ parts} \]
\[Quality = \frac{320 \text{ parts} - 8 \text{ parts}}{320 \text{ parts}} = 97.50\% \]

Due to uncertainties and cycle time targets, the operator rejects some parts with flaws below the applicable standard thresholds. Exact measurement on film viewers can be challenging. Skilled and trained inspectors can compensate for this effect and therefore a low mean false positive quota of eight parts per day is achieved.

\[t_{operating} = 480 \text{ min} - 60 \text{ min operator} - 30 \text{ min} \]
\[X-ray\ warm-up = 60 \text{ min film specific downtime} = 330 \text{ min} \]
\[Availability = \frac{330 \text{ min}}{480 \text{ min}} = 68.75\% \]

Operators need breaks, have shift changes, and are subject to distraction by colleagues or other incidents. The X-ray warm-up has to be performed to prepare the tube for operation. Variations in the film process like overexposed, misplaced, or inconclusive films and replacement of chemicals lead to another excess time of 60 min.

\[P_{inspected} = 330 \text{ min} / 15 \text{ min} = 22 \]
\[Performance = \frac{22 \text{ parts} \times 1.5 \text{ min}}{330 \text{ min}} = 10.00\% \]

As the mean cycle time for one inspection is approximately 15 min, the efficiency in respect to the target cycle time is extremely low. This will result in a critical bottleneck in the production chain. To even this effect, the company will have to invest in multiple X-ray workplaces.

\[OEE = 97.50\% \times 68.75\% \times 10.00\% = 6.70\% \]

Example B: Manual Inspection Through a Digital Radiography System

\[P_{false\ positives} = 15 \text{ parts} \]
\[Quality = \frac{320 \text{ parts} - 15 \text{ parts}}{320 \text{ parts}} = 95.31\% \]
Due to uncertainties and cycle time targets, the operator rejects some parts with flaws below the applicable standard thresholds. Increased analysis (measurements and inspection through the American Society of Mechanical Engineers defect catalog) would increase the quality while decreasing the KPI.

- $t_{\text{operating}} = 480 \text{ min} - 30 \text{ min operator} - 30 \text{ min X-ray warm-up} - 30 \text{ min operator change} = 390 \text{ min}$
- Availability = 390 min / 480 min = 81.25%

As noted before, operators need breaks and are subject to distraction by colleagues or other incidents. The X-ray warm-up has to be performed to prepare the tube for operation.

- Performance = $(280 \text{ parts} \times 1.5 \text{ min}) / 480 \text{ min} = 87.50%$

The cycle time for a digital radiography inspection is estimated at approximately 1.5 min. This equals the calculator cycle time and results in no buffer. Therefore, even minor incidents and operator distraction causes impacts on throughput and performance. As a result, the mean throughput per day is just 280 parts.

- OEE = 95.31% \times 81.25% \times 87.50% = 67.76%

Example C: In-line System with Automated Defect Recognition

- $P_{\text{false positives}} = 5 \text{ parts}$
- Quality = $(320 \text{ units} - 5 \text{ parts}) / 320 \text{ units} = 98.44%$

Through the use of sophisticated inspection patterns and regions of interest, NDT responsible supervisors can decrease the number of false positives. This reduces the risk of false negatives by a huge amount. Automatic systems also eliminate the risk of human error. Due to minor positioning offsets, the system still has a pseudo reject rate of five parts per day.

- $t_{\text{operating}} = 480 \text{ min} - 30 \text{ min X-ray warm-up} = 450 \text{ min}$
- Availability = 450 min / 480 min = 93.75%

Due to reduced human intervention, the operator related downtime is completely reduced. The X-ray warm-up still applies but is of no big influence in practice, as the system cycle time exceeds the target cycle time by a huge amount.

- Performance = $(317 \text{ parts} \times 1.5 \text{ min}) / 480 \text{ min} = 99.06%$

As the whole process is automated, the throughput of the system is not impacted by any incidents except part handling or operation failures. Due to one incorrectly oriented part, the system needed a reset and underperformed by three parts. Again, this is just relevant on paper, as the system exceeded the target throughput by a huge amount.

- OEE = 98.44% \times 93.75% \times 99.06% = 91.41%

Comparing the results, it is no surprise that digital radiography outperformed radiographic testing (RT) in terms of process efficiency. Inspection by film consumes a lot of time for film fixture, exposure, development, evaluation, and archiving. Furthermore, all steps can be automated through computer numeric control sequences and executed through a single click on modern digital radiography systems. ADR inspection solutions are the next level in terms of efficiency. Figure 5 shows a typical automated ADR system, which consists of two robots. This allows an installation in the production line and guarantees a short cycle time. Please note that not all applications and inspection requirements allow ADR, but this will be discussed in the second part of this article.

The sole purpose of this example is to show how the performance parameters allow the comparison of completely distinct solutions and technologies. The next step is always the commercial analysis to justify the investment. Again, all values are purely for illustration purposes and do not represent real prices.

Investment Costs

- Costs_A = no investment, as 10 inspection stations already exist
- Costs_B = $250 000
- Costs_C = $500 000

Return on Investment of the Transition from Digital Radiography to Film

- Costs_labor = 9 persons \times 8 h/day \times 21 days \times $35/h = $52 920/ month
- Costs_consumables = $8000 films + $3000 chemicals + $1000 storage and others = $12 000/month
- Costs_rejects = –7 units \times 21 days \times $40 = –$5880 (decreasing with operator experience)
- Costs_performance = not applicable as process is running
- Savings per month = $52 920 + $12 000 – $5880 = $59 040/ month
- ROI = ($250 000) / $59 040 = 4.23 months
Return on Investment of the Transition from Digital Radiography to Automatic Defect Recognition

- Costs_labor = 6 h/day × 21 days × $35/h = $4410/month
- Costs_rejects = 10 units × 21 days × $40 = $8400
- Costs_performance = 30 units × 1.5 min × 21 days × $50/h = $787
- Savings per month = $4410 + $8400 + $787 = $13 597/month
- ROI = ($500 000 – $250 000) / $13 597 = 18.4 months

The aforementioned calculation is based on fictional numbers but is representative for manufacturers of medium- to high-volume parts like castings. Of course, in the case of industries with a lower production volume, for example, in some aerospace applications, the ROI will be completely different and other factors are of bigger interest. In general, the investment into digital radiography equipment has a relatively short amortization. As traditional RT involves a tremendous amount of labor and consumables, the costs are scaled directly with the production volume. If one compares visual digital radiography and automation (such as ADR), it can be seen that the investment has a longer ROI. Therefore, this technology is rather suitable for long-term production projects with higher volume.

Figure 6 visualizes the costs per part with all three solutions. The film costs have a linear increase based on the production volume. The leaps or ripples represent costs, occurring due to new equipment investments like another inspection room or a new X-ray tube. The visual digital radiography approach is similar but increases at a much slower pace due to less personnel and consumable requirements. The downside is a higher capital investment. The automated system poses a high upfront investment compared to the other solutions. Due to the high reduction in operational costs, the mean price per part gradually decreases over time. If the current setup uses film, an investment in digital radiography is feasible on point A while point B justifies a direct transition to automation. If a digital radiography setup is used, an automation system should be implemented at point C.

Soft factors like reduced human error, lower chance for false negatives, better scalability, and enhanced process stability are not even taken into account for this calculation and are additional benefits of automation. Please note that this section is purely focusing on the commercial point of view. Quality, process, and compliance related perspectives also have a huge influence but will be evaluated in later parts of this article.

Conclusion and Outlook

The previous sections gave an overview on how to compare processes and solutions in an unbiased way through arbitration. As already stated, these calculations are just a simplified example and unique for every industry or application. It is highly recommended to contact solution providers or system suppliers at an early stage of the conception phase for detailed consultation and support.

A basic understanding of these metrics and processes is of special importance for NDT technicians and managers to evaluate and justify new investments. The next parts of this article will focus more on the technical concept and implementation of customized X-ray systems. The next issues will also further go into practical examples and conclusions.

A last note on behalf of the author: when talking about modernization and automation, one perceives a high degree of fear in the NDT industry. Highly skilled technicians have the fear of losing their jobs, the fear of being left behind in digitization, or just a diffuse fear of change. It is important to understand that automation does not destroy jobs, but will generate jobs in the long run. It is the only chance to be competitive against manufacturers operating in low-wage countries, which becomes easier than ever through increasing globalization. And even though the digital technology is very complex, the actual inspection and operation itself is very intuitive when using well-engineered solutions. Therefore, it is highly encouraged to embrace the change in technology and see the opportunities for the future.

AUTHOR

Lennart Schulenburg: VisiConsult X-ray Systems & Solutions, GmbH; e-mail L.schulenburg@visiconsult.de; website www.visiconsult.de.

REFERENCES

AWS CERTIFICATION PROGRAMS

SERIOUS WORK. SIGNIFICANT IMPACT.

With “manufacturing skills gap” conversations becoming more and more commonplace, it’s hard to ignore the need for credentialed skills.

AWS Certifications are the most recognized credentials in the welding industry; created and backed by a collective of experience and distinction.

Start your path toward
AWS Certification at
go.aws.org/pathtocertification
NDT Professional Connections

Products and Services

Professional Connections allow companies to showcase their business cards. Check out the various products and services on display each issue to see what may be of value to you.

FIRST CHOICE NDE

LIVE, ONLINE NDT/CWI Training

Equipment & samples sent for use in training classes

Convenient evening and weekend hours for training

Levels I, II & III training/Level III Representation

360-702-8858

Trever Sprouse Level III, MT, PT, RT, UT, VT

WWW.FIRSTCHOICENDE.COM

BRL CONSULTANTS, INC.

Bryan Lancon

ASNT NDT Level III

ACCP Professional Level III – AWS/CWI

219 W. Rhapsody

San Antonio, TX 78216

www.brlconsultants.com bryan@brlconsultants.com

“Quality Service Since 1993”

ISO 9001:2008 certified

HELLIER

Don Locke

General Manager

office: +1.281.873.0980 x 102

fax: +1.281.873.0981

mobile: +1.832.221.7386

e-mail: dlocke@hellierndt.com

www.hellierndt.com

Worldwide

Training Provider

a Rockwood Company

Maintenance & Inspection Services, Inc.

Regional Office: Chattanooga, TN

Colesville, CA; Columbia, SC; Norfolk, VA; San Antonio, TX; Pensacola, FL

Home: 843-574-9994

Fax: 843-414-6288

Email: mis@micsinc.com

Web: www.micsinc.com

Services Performed:

Non-Destructive Testing / Training

ECT, RFT, NFT, RPC, Array, VT, UTI

Quality Assurance / Quality Control

Heat Exchanger Cleaning & Maintenance

Hy-Torque Products and Services

Chuck Hellier’s NDT Classroom, Inc.

www.ndtclassroom.com

“Training without the Travel”

William Cronberger

Chief Business Development Officer

Office: 716-406-8165

Mobil: 716-812-8165

billc@ndtclassroom.com

www.ndtclassroom.com

Chuck Hellier

Co-founder

NDT Classroom, Inc.

Providing online training for the NDT Industry including: Aerospace, Oil & Gas, Structural, and all related fields.
Technicians Advisory Committee Call for Members

The Technicians Advisory Committee (TAC) is seeking new members. Oversight for production and review of *The NDT Technician (TNT): A Quarterly Publication for the NDT Practitioner* is provided by TAC within the Publications Division of ASNT’s Technical and Education Council. On the basis of interest, qualifications, and ability to contribute, any individual may become a member of TAC. An interest in the work and various roles of NDT technicians is a key requirement.

ASNT membership, although encouraged, is not a prerequisite for committee membership. Committee membership may be sought through written or electronic application to the committee chair. Committee membership is subject to review and acceptance by the committee, if the chair deems it necessary.

To apply for membership to the Technicians Advisory Committee, please contact Ray Morasse at rgmorasse@gmail.com.

Make plans today to take part in the next issue of *The NDT Technician (TNT)* newsletter advertising program. *TNT* is published quarterly in January, April, July, and October. For more information on advertising in the next issue, published in July, contact: Advertising Supervisor Diane Oen at (800) 222-2768 X209 (U.S./Canada) E-mail doen@asnt.org.
Practitioner Profile

Peter Pelayo

Peter Pelayo currently holds an ASNT NDT Level III certificate and works in quality assurance at Met-L-Chek. He has over a decade of experience in quality certification and operation, most recently in the field of aviation and aerospace. Pelayo is a smart and enthusiastic member of the NDT community, and he promotes industry knowledge and community on his blog, Sharing NDT.

Q. How did you begin your career in NDT?
A. My career in NDT started my freshman year in high school at Don Bosco Technical Institute’s materials science program. During my freshman and sophomore years, I took NDT and really liked it. I decided to take 101 courses for MT, PT, and RT at night during my junior year so I could get a job when I graduated. My first job was at Arrowhead Products (Los Alamitos, California) doing PT and RT Level I work. I have worked at aerospace companies, refineries, forging plants, heat treatment plants, and plating shops over the past 10 years.

Q. Describe the work you do. What are your responsibilities?
A. As the quality assurance manager for Met-L-Chek, I am slowly taking over the responsibility to ensure that the proper procedures, codes, and standards are followed during the manufacturing of magnetic particle and liquid penetrant materials.

Q. Is your work focused on a particular field?
A. My work is not focused on one particular field because NDT is really a broad subject, even for a small industry. At work I focus on chemical manufacturing, quality, production, and management. In my personal time, I write an NDT blog (@sharingndt on Instagram), which covers how NDT works in manufacturing and engineering. I cover topics related to welding, machining, plating, flaw interpretation, metallurgy, UT, PT, RT, and MT, what others are doing in the field, and job postings. I’m also on the board for the Los Angeles Section. As the webmaster and secretary, I’m working with my local Section on ideas to get younger students involved in ASNT.

Q. What are your professional goals?
A. My professional goals include obtaining my master’s degree in business, becoming ISO 9000 certified, and passing the PT Level III exam. I am unsure if I want to be a full-time consultant after this. There is still so much to learn in this industry.

Q. What’s the best part of NDT?
A. This industry has great people. It’s what made me want to join the Los Angeles Section board. I enjoy seeing what other people are doing in the industry, not just inspection. It’s interesting to hear the different stories about how people started, why they get involved, and also what it means to those that are certified inspectors and teachers.

Q. What can industry do to encourage careers in NDT?
A. There needs to be a general consensus among engineers and manufactures of the need and importance for NDT. I don’t believe that NDT is exclusive in the manufacturing processes, but rather inclusive. It’s directly impacted by all the processing steps that took place before it. More science, technology, engineering, and mathematic programs should raise awareness of the importance of NDT because NDT protects assets and people from disasters.

Q. What advice would you offer to individuals considering careers in NDT?
A. The greatest piece of advice that I could give, which is coming from my own experience, is to be a lifelong learner. This means taking up other jobs at your company when NDT is slow (which happens), taking courses to advance from Level I to III, and participating in ASNT functions. It’s also important to read articles, magazines, and books. The best piece of advice I can give new technicians is to listen to experienced professionals in this industry for guidance.

You can reach Peter Pelayo at sharingndt@gmail.com. More of Peter Pelayo’s interview can be found at http://tc.asnt.org/pro/b/practitionerprofile.
Met-L-Chek®
Penetrant Professor Approved
Cost Effective Penetrant and Magnetic Particle Materials since 1952

Fluorescent & Visible Penetrants
Visible Spray on Weld Inspection

High Temperature Penetrant Indications

Fluorescent & Visible Wet Method MPI

Dry Method MPI Materials

Met-L-Chek Company
1639 Euclid Street, Santa Monica, California 90404 U.S.A.
Phone: 310-450-1111 Fax: 310-452-4046 E-mail: info@met-l-chek.com
“Penetrant Professor” newsletter, SDS’s and product data available on line at www.met-l-chek.com